[논문 리뷰] SHAP
오늘은 설명가능한 AI에 대표적인 방법론인 SHAP 논문을 리뷰하려고 한다. Abstract 인공지능에서 모델이 예측한 결과를 이해하는 것은 중요하다. 그러나, 앙상블과 딥러닝 같은 복잡한 모델을 사용함으로써 large modern dataset에서 높은 정확도를 보이는 경우에는 정확도와 해석력 사이에 tention이 발생한다. 많은 방법론들은 복잡한 모델의 예측을 설명하기 위해 제안되고 있지만, 이러한 방법론들이 어떻게 연관되어 있고 한 방법론이 다른 방법론에 대해 언제 더 선호되는지에 대해 아직 명확하지 않는다. 때문에 해당 논몬에서는 SHAP 방법론을 제안한다. SHAP은 각각의 Feature에 특정한 예측에 대한 중요도(기여도)를 부여한 값이다. SHAP의 새로운 구성요소는 아래와 같다.The i..